Exercises from Kaplansky's textbook.

Sec 1.4: 4, 9, 16

1. Redo HW2 Exercise 1, especially part (a).
2. Carefully reprove the following statements indicating each use of the Axiom of Choice.
(a) A function $f: X \rightarrow Y$ is injective if and only if it has a left inverse.
(b) A function $f: X \rightarrow Y$ is surjective if and only if it has a right inverse.
3. Let $G:=(V, R)$ be an undirected graph, i.e., V is a set (of vertices) and R (the set of edges) is a symmetric relation on V. A G-path (or a path in G) is a sequence $v_{0}, v_{1}, \ldots, v_{n}$ of vertices such that there is an edge between every pair of consecutive vertices, i.e., $v_{i} R v_{i+1}$ for each $i \in\{0,1, \ldots, n-1\}$. For vertices $u, v \in V$, a G-path from u to v is a G-path that starts with u and ends with v.

Define a binary relation E_{G} on V by setting

$$
u E_{G} v: \Longleftrightarrow \text { there is a } G \text {-path from } u \text { to } v
$$

for $u, v \in V$.
(a) Prove that E_{G} is an equivalence relation.
(b) Call a set $U \subseteq V G$-connected if for any $u, v \in U$, there is a G-path from u to v all of whose vertices lie in U. Prove that the E_{G}-classes are exactly the \subseteq-maximal G-connected sets, called the connected components of G.
(c) Define a graph $G=(V, R)$ by taking $V:=\mathbb{Z}^{2}$, putting

$$
\left(x_{0}, y_{0}\right) R\left(x_{1}, y_{1}\right): \Longleftrightarrow\left(x_{1}, y_{1}\right)-\left(x_{0}, y_{0}\right)= \pm(1,1)
$$

for $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \in \mathbb{Z}^{2}$. Write each class as an image of a function on \mathbb{Z}, i.e., for each $(x, y) \in \mathbb{Z}^{2}$, define a function $f_{(x, y)}: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$ such that $[(x, y)]_{E_{G}}=f_{(x, y)}(\mathbb{Z})$. How many E_{G}-classes (finitely-many or not) are there?
4. For any set X, prove that $\{\mathscr{P}(x): x \in X\}$ is a set in the following axiom systems:
(a) ZF without Replacement.
(b) ZF without Union.
5. (a) Prove that there is no set R such that $R=\{x: x \notin x\}$.
(b) Deduce that there is no set of all sets, i.e., there is no set X such that $X=\{x: x=x\}$.
6. Do all of the problems on HW3 (especially 2 and 3) to get some practice with partial orderings and well orderings.

