Exercises from Kaplansky's textbook.

Sec 1.4: 4, 9, 16

- **1.** Redo HW2 Exercise 1, especially part (a).
- 2. Carefully reprove the following statements indicating each use of the Axiom of Choice.
 - (a) A function $f: X \to Y$ is injective if and only if it has a left inverse.
 - (b) A function $f: X \to Y$ is surjective if and only if it has a right inverse.
- **3.** Let G := (V, R) be an *undirected graph*, i.e., V is a set (of vertices) and R (the set of edges) is a symmetric relation on V. A *G*-path (or a path in G) is a sequence v_0, v_1, \ldots, v_n of vertices such that there is an edge between every pair of consecutive vertices, i.e., $v_i R v_{i+1}$ for each $i \in \{0, 1, \ldots, n-1\}$. For vertices $u, v \in V$, a *G*-path from u to v is a *G*-path that starts with u and ends with v.

Define a binary relation E_G on V by setting

$$u E_G v :\iff$$
 there is a *G*-path from *u* to *v*

for $u, v \in V$.

- (a) Prove that E_G is an equivalence relation.
- (b) Call a set $U \subseteq V$ *G*-connected if for any $u, v \in U$, there is a *G*-path from u to v all of whose vertices lie in U. Prove that the E_G -classes are exactly the \subseteq -maximal *G*-connected sets, called the *connected components* of *G*.
- (c) Define a graph G = (V, R) by taking $V := \mathbb{Z}^2$, putting

 $(x_0, y_0) R(x_1, y_1) :\iff (x_1, y_1) - (x_0, y_0) = \pm (1, 1)$

for $(x_0, y_0), (x_1, y_1) \in \mathbb{Z}^2$. Write each class as an image of a function on \mathbb{Z} , i.e., for each $(x, y) \in \mathbb{Z}^2$, define a function $f_{(x,y)} : \mathbb{Z} \to \mathbb{Z}^2$ such that $[(x, y)]_{E_G} = f_{(x,y)}(\mathbb{Z})$. How many E_G -classes (finitely-many or not) are there?

- 4. For any set X, prove that $\{\mathscr{P}(x) : x \in X\}$ is a set in the following axiom systems:
 - (a) ZF without Replacement.
 - (b) ZF without Union.
- **5.** (a) Prove that there is no set R such that $R = \{x : x \notin x\}$.
 - (b) Deduce that there is no set of all sets, i.e., there is no set X such that $X = \{x : x = x\}$.
- 6. Do all of the problems on HW3 (especially 2 and 3) to get some practice with partial orderings and well orderings.